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Upper and lower solutions method for
Caputo—Hadamard fractional differential inclusions
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ABSTRACT. In this paper, we use some background concerning mul-
tivalued functions and set-valued analysis, the fixed point theorem of
Bohnenblust-Karlin and the method of upper and lower solutions to
investigate the existence of solutions for a class of boundary value prob-
lem of functional differential inclusions involving the Caputo—Hadamard
fractional derivative.

1. INTRODUCTION

There are numerous applications of fractional calculus and fractional dif-
ferential equations in various fields of science and engineering; see [4, 7, 8,
17, 20, 23, 24, 25]. Many researchers studied different classes of differential
equations involving the Riemann-Liouville, Caputo and Hadamard deriva-
tives; see [3, 6, 10, 11, 12, 13, 21].

In [1, 2, 5, 9, 15, 22|, the authors use the method of upper and lower
solutions to study the existence of solutions for ordinary and fractional dif-
ferential equations and inclusions. In this paper we give some existence
results for the following Caputo-Hadamard fractional differential inclusion,

(1) Hepry(t) € F(t,y(t)); forae. teJ=[1,T],
with the boundary condition
(2) L(y(1),y(T)) =0,

where T > 1, #¢D" is the Caputo-Hadamard fractional derivative of order
0<r<1, F:JxR— P(R)is a multivalued map, P(R) is the family of
all nonempty subsets of R, and L : R? — R is a given continuous function.
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This paper initiates the application the method of upper and lower so-
lutions for fractional differential inclusions involving the Caputo—Hadamard
fractional derivative.

2. PRELIMINARIES

Let (C(J,R), || - |[) be the Banach space of continuous functions y from
J to R with the usuel uniform norm

[Ylloo = sup |y(t)]-
teJ

By L!'(J,R) we denote the Banach space of all Lebesgue integrable functions
y : J — R with the norm

T
Iyl = / ly(t)]dt.

Denote by AC(J,R) the space of absolutely continuous functions from .J
into R.

For a given Banach space (X, || - ||), we define the following subsets of
P(X):
Py(X)={Y € P(X):Y is closed},
Py(X)={Y € P(X):Y is bounded},
Pp(X)={Y € P(X):Y is compact}
P.,(X)={Y € P(X):Y is convex}
Pepev(X) = Pep(X) N Pey(X).

Definition 2.1. A multivalued map G : X — P(X) is said to be convex
(closed) valued if G(x) is convex (closed) for all x € X. A multivalued map
G is bounded on bounded sets if G(B) = UzepG(x) is bounded in X for all
B € Py(X) (i.e. sup,ep{sup{ly| : y € G(z)} exists).

Definition 2.2. A multivalued map G : X — P(X) is called upper semi-
continuous (u.s.c.) on X if for each zp € X, the set G(z¢) is a nonempty
closed subset of X, and for each open set N of X containing G(z¢), there
exists an open neighborhood Ny of g such that G(Ny) C N. G is said to be
completely continuous if G(B) is relatively compact for every B € P,(X).

Definition 2.3. Let G : X — P(X) be completely continuous with nonempty
compact values. Then G is u.s.c. if and only if G has a closed graph (i.e.
Ty = TuyYn — Y, Yn € G(zy) imply y. € G(z4)). G has a fixed point if
there is € X such that z € G(x).

We denote by FixG the fixed point set of the multivalued operator G.
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Definition 2.4. A multivalued map G : J — P, (R) is said to be measurable
if for every y € R, the function:

t—d(y,G(t)) =inf{ly — 2| : z € G(t)}
is measurable.

Lemma 2.1. [18] Let G be a completely continuous multivalued map with
nonempty compact values, then G is u.s.c. if and only if G has a closed
graph.

Definition 2.5. A multivalued map F : J x R — P(R) is said to be
Carathéodory if:

(1) t — F(t,u) is measurable for each u € R;
(2) uw— F(t,u) is upper semicontinuous for almost all ¢ € J.

F is said to be L!'-Carathéodory if (1), (2) and the following condition holds:
(3) For each g > 0, there exists ¢, € L'(J,RT) such that

|F'(t,u)|lp = sup{|v] : v e F(t,u)} < ¢, for all u| < ¢ and for a.e. ¢t e J.
For each y € C(J,R), define the set of selections of F' by
Sroy = {v € L*([1,T),R) : v(t) € F(t,y(t)) a.e. t € [1,T]}.
Let (X,d) be a metric space induced from the normed space (X, |- |). the
function Hy : P(X) x P(X) — Ry U {oo} given by:
Hy(A, B) = max{supd(a, B),supd(A,b)}
acA beB

is known as the Hausdorff-Pompeiu metric. For more details on multivalued
maps see the books of Hu and Papageorgiou [18].

In the sequel, we need the following fixed point theorem:

Theorem 2.1. (Bohnenblust-Karlin)[16] Let X be a Banach space and K €
Petev(X), and suppose that the operator G : K — Pg o (K) is upper semi-
continuous and the set G(K) is relatively compact in X. Then G has a fized
point in K.

Let us recall some definitions and properties of Hadamard fractional in-
tegration and differentiation. Let § = t&, and set
ACF(JR)={y:J =R : " y(t) € AC(J,R)}.

Definition 2.6. [20] The Hadamard fractional integral of order > 0 for a
function h € L([1,+00),R) is defined as

HIrh(t) = r(lr) /j <log i)r_l h(j)ds,

provided the integral exists.
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Example 2.1. Let ¢ > 0. Then

Arint = (Int)'*9; for a.e. t € [1,400).

1
I'2+q)

Definition 2.7. [20] The Hadamard fractional derivative of order r > 0
applied to the function h € AC§([1,400),R) is defined as

("Din)(t) = 5" ("I h)(1),
where n —1 <r <mn, n=[r]+1, and [r] is the integer part of r.

Definition 2.8. [19] For a given function h € AC§([a,b],R), such that
0 < a < b, the Caputo-Hadamard fractional derivative of order r > 0 is
defined as follows:

L oky(a s
MNWFﬂmP@—§5%Wm31w,
where Re(a) > 0 and n = [Re(a)] + 1.

Lemma 2.2. [19] Let y € AC§([a,b],R) or C§([a,b],R) and o € C. Then

n—1 a k
Mt = - 0 S0 (lost)
k=0

3. MAIN RESULTS

Definition 3.1. A function y € AC(J,R) is said to be a solution of (1) —(2)
if there exists a function v € Sgo, such that 7¢D"y(t) = v(t) a.e. J and the
boundary condition L(y(1),y(T")) = 0 is satisfied.

Definition 3.2. Afunction w € AC(J,R) is said to be an upper solution of
(1) = (2) if L(w(1),w(T)) > 0, and there exists a function v; € Spoy such
that ¢D™w(t) > vy (t) a.e. J.

Similarly, A function u € AC(J,R) is said to be a lower solution of (1) —
(2) if L(u(1),u(T)) < 0, and there exists a function vy € Spo, such that
Heproy(t) < va(t) a.e. J.

Theorem 3.1. Assume the following hypotheses hold:
(H1) F:J xR = Pep(R) is Carathéodory,
(H2) There exist u,w € C(J,R), lower and upper solutions, respectively,
for problem (1) — (2) such that u < w,
(H3) The function L(-,-) is continuous on [u(1),w(1)] x [u(T),w(T)], and
nonincreasing with respect to both of its arguments,
(H4) There exists | € L*(J,R") such that

Hy(F(t,y), F(t,y)) <U(t)|ly —gl; for every y,y € R,
and

d(0,F(t,0)) <I(t); a.e. t € J.
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Then the problem (1) — (2) has at least one solution y defined on J such that

u<y<w.
Proof. Consider the following modified problem
(3) Hepryt) € F(t,7(y(t))); for ae. t € J,
(4) y(1) = 7(y(1)) - L(y(1),3(T)),
where

7(y(t)) = max{u(t), min{y(t), w(t)}},
and
y(t) = (y(1)).
A solution to (3) — (4) is a fixed point of the operator N : C(J,R) —
P(C(J,R)) defined by

t r—1 s
N@):{hEC%LR):MﬂzyO)+Fé)[ O%Z> m@i},

where
vedve §}%T(y) cu(t) > vi(t) on Ay andv(t) < wa(t)on As},

S}pw(y) ={ve L'JR) :v(t) € F(t,(1y)(t)), ae t € J},
Ay ={ted y(t) <ult) <w(t)}), A= {te T :ult) < w(t) <y}
Remark 3.1. (1) For each y € C(J,R), the set §}%T(y) is nonempty. In
fact, (H1) implies that there exists v3 € S}TOT(y), SO we set
U= U1XA; T V2XA, T U3X A3,

where

Ay ={te J:ult) <y(t) < w(H)}.

Then by decomposability, v € S}%T(y).

(2) By the definition of 7 it is clear that F'(-, 7y(+)) is an L!— Carathéodory
multi-valued map with compact convex values and there exists ¢; €
LY(J,RT) such that

|F(t, ry(®)llp < 61(t) for cach y € R.

(3) Since 7(y(t)) = u(t) for t € Ay, and 7(y(t)) = w(t) for t € Ag, then
from (H3), the equation (4) implies that

()] < Ju(D)] + [ L(w(1), u(T)] < [u(1)] + [L(y(1),y(T))[] = |u(1)| on Ay,
and
y(1) = w(1) = L(w(1),w(T) < w(l) — L(y(1),y(T")) = w(l) on As.
These show that,
ly(1)] < min{[u(1)[, |w(1)[}.
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Let

= minfu(U). (D]} + 11 o8 T)"

and consider the closed and convex subset of C'(J,R),
B={ycC(J,R): [yl < R}.

We shall show that the operator N : B — P o, (B) satisfies all assumptions
of Theorem 2.1. The proof will be given in six steps.

Step 1: N(y) is convex for each y € B.
Let hi, he belong to N(y), then there exist vq,v9 € S}%T(y) such that for
each t € J, we have, for i = 1,2,

1 t £\ ds
h;(t) = y(1 _— log — i(8)—.
(t) y()+r(r)/1<ogs> Vi)~
Let 0 < d < 1. Then, for each t € J, we have

I ) a5 i

Since Spor(y) is convex (because F' has convex values), we have

(dh1 + (1 —d)ho)(t) = y(1) +

dhy + (1 = d)ha € N(y).

Step 2: N maps bounded sets into bounded sets in B.

For each h € N(y), there exists v € g};w(y) such that

I e\ ds
b0 =s 0+ g5 [ (toet) 9%
From (H1)-(H3), for each t € J, we have

i (e2) 2

R < ly@)| +

T r—1 (s
< min{|u(1)], |lw(1)|} + I’(lr)/l <log Z) | i )’ds
< min{lu(Dl, fo(1)]} + LS Gog )
Thus
bl < R

Step 3: N maps bounded sets into equicontinuous sets of B.
Let t1,te € J, t1 < t2, Let y € B and h € N(y). Then
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h(t2) = ()] =

pallz, [ ta2\" t2\"| ds
< Tt [(bgs) SCHE

p1llL, /t2 ty\" ' ds
log 22 >
+ Lir) Jy %8 s

— 0ast] — to.

As a consequence of the three above steps, we can conclude from the Arzelé-
Ascoli theorem that N : C(J,R) — P(C(J,R)) is completely continuous.

Step 4: N has a closed graph.
Let yn, — Y«, hn € N(yn) and h,, — h,. We need to show that h, € N(ys).

hy, € N(yp,) means that there exists v, € g}%T(y) such that, for each t € J,

F(lr) /lt <log Z)l l/n(s)%.

We must show that there exists v, € S}, _

) =0+ 7 t (1ogZ>H (2.

Since F'(t,-) is upper semi-continuous, then for every € > 0, there exists a
natural number ng(e) such that, for every n > ng, we have

ha(t) = y(1) +

) such that, for each t € J,

vn(t) € F(t, Tyn(t)) C F(t,y«(t)) + eB(0,1) a.e. t e J.

Since F(+,-) has compact values, then there exists a subsequence vy, (-) such
that

V() = 1) 35 m 00,
and
vi(t) € F(t,Ty«(t)) ae. t € J.
For every w € F(t,Ty«(t)), we have
Vi (8) = va ()] < [vn,, (8) — w] + [ — v ()]
Then
Vi (8) = v (8)] < d(wn,, (), F' (2, Ty (1))



114 UPPER AND LOWER SOLUTIONS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS

We obtain an analogous relation by interchanging the roles of v, and v,
and it follows that

i (0) — 22 (8)] < Ha(F( 7y 0), F(750(60) < 10) [ — 0.
Then
1 t e\ ds
Ponft =0 5 1y CH ) =0
o e [ 1dsln, — vl
Thus

1 T
I, — hilloo £ =—— (logT)" 1(s)ds||Yn,, — Ys|loo
I =l < gy (08T [ 1(6)dsll, =l — 0
as m — oQ.

Hence, Lemma 2.1 implies that N is upper semicontinuous.

Step 5: Every solution y of (3) — (4) satisfies

) -
u(t) < y(t) <w(t) for allt € J.

Let y be a solution of (3) — (4). We prove that
u(t) < y(t)for all t € J.
Suppose not. Then there exist ¢, t2 with ¢; < to such that u(t1) = y(t1)
and
u(t) > y(t) for all t € (t1, t2).
In view of the definition of 7 one has
Hepry(t) € F(t,u(t)) for all t € (t1, ta).
Thus there exists v € Spor(y) With v(t) > v1(t) a.e. on (t1, t2) such that
Hepro(t) = v(t) for all t € (t1, to).
An integration on (1, t|, with t € (¢1, t2) yields
t r—1
w0 =9t =5 [ (et) v
Since w is a lower solution to (1) — (2), then
t r—1
u(t) — u(ty) < F(l)/ <log z) Ul(s)%; Le (1, ta).
It follows from y(¢1) = u(t1) and v(t) > vy (t) that
u(t) < y(t) for all t € (¢, t2).
This is a contradiction, since u(t) > y(t) for all ¢t € (¢1, t2). Consequently
u(t) < y(t)for all t € J.
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Analogously, we can prove that
y(t) < w(t) for all t € J.
This shows that
u(t) <y(t) <w(t) for all t € J.

Consequently, the problem (3) — (4) has a solution y satisfying u <y < w.
Step 6: Every solution of problem (3) — (4) is solution of (1) — (2).
Suppose that y is a solution of problem (3) — (4). Then, we have
Hepry(t) € F(t, 7(y(t))) for ae. t € J,

and
y(1) = 7(y(1)) — L(y(1),y(T)).
Since, for all ¢t € J, we have

u(t) <y(t) < w(d),

then,
T(y(t)) = y(t).
Thus, we get
Hepry(t) € F(t,y(t)) for a.e. t € J,
and

L(y(1),y(T)) = 0.
We only need to prove that

u(l) < y(1) — L(y(1),y(T)) < w(l).
Suppose that
y(1) = L(y(1),y(T)) < u(1).
Since L(u(1),u(T)) < 0, we have

y(1) <y(1) — L(u(1),u(T)).

Since L(-,-) is nonincreasing with respect to its both arguments, then we
obtain

y(1) <y(1) = Lu(1),u(T)) < y(1) = L(y(1),y(T)) < u(l).

Hence, we get y(1) < u(1l), which is a contradiction. Analogously we can

prove that
y(1) = Ly(1),y(T)) < w(1),
Hence, y is a solution to (1) — (2).

This concludes that problem (1) — (2) has a solution y satisfying u <y <

w.
U
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Remark 3.2. In the case where L(x,y) = ax — by — ¢, Theorem 3.1 shows
existence results to the following problem,

(5) Hepry(t) € F(t,y(t)) for a.e. t € J,

(6) ay(1) —by(T) =c,
where —b < a < 0 < b, ¢ € R, which includes the anti-periodic case b =
—a, c=0.
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