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Upper and lower solutions method for
Caputo–Hadamard fractional differential inclusions

Saïd Abbas, Mouffak Benchohra,
Samira Hamani, Johnny Henderson

Abstract. In this paper, we use some background concerning mul-
tivalued functions and set-valued analysis, the fixed point theorem of
Bohnenblust–Karlin and the method of upper and lower solutions to
investigate the existence of solutions for a class of boundary value prob-
lem of functional differential inclusions involving the Caputo–Hadamard
fractional derivative.

1. Introduction

There are numerous applications of fractional calculus and fractional dif-
ferential equations in various fields of science and engineering; see [4, 7, 8,
17, 20, 23, 24, 25]. Many researchers studied different classes of differential
equations involving the Riemann-Liouville, Caputo and Hadamard deriva-
tives; see [3, 6, 10, 11, 12, 13, 21].

In [1, 2, 5, 9, 15, 22], the authors use the method of upper and lower
solutions to study the existence of solutions for ordinary and fractional dif-
ferential equations and inclusions. In this paper we give some existence
results for the following Caputo–Hadamard fractional differential inclusion,

(1) HcDry(t) ∈ F (t, y(t)); for a.e. t ∈ J = [1, T ],

with the boundary condition

(2) L(y(1), y(T )) = 0,

where T > 1, HcDr is the Caputo–Hadamard fractional derivative of order
0 < r ≤ 1, F : J × R → P(R) is a multivalued map, P(R) is the family of
all nonempty subsets of R, and L : R2 → R is a given continuous function.
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108 Upper and lower solutions for fractional differential inclusions

This paper initiates the application the method of upper and lower so-
lutions for fractional differential inclusions involving the Caputo–Hadamard
fractional derivative.

2. Preliminaries

Let (C(J,R), ‖ · ‖∞) be the Banach space of continuous functions y from
J to R with the usuel uniform norm

‖y‖∞ = sup
t∈J
|y(t)|.

By L1(J,R) we denote the Banach space of all Lebesgue integrable functions
y : J → R with the norm

‖y‖L1 =

∫ T

1
|y(t)|dt.

Denote by AC(J,R) the space of absolutely continuous functions from J
into R.

For a given Banach space (X, ‖ · ‖), we define the following subsets of
P(X) :

Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact}
Pcv(X) = {Y ∈ P(X) : Y is convex}
Pcp,cv(X) = Pcp(X) ∩ Pcv(X).

Definition 2.1. A multivalued map G : X → P(X) is said to be convex
(closed) valued if G(x) is convex (closed) for all x ∈ X. A multivalued map
G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all
B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)} exists).

Definition 2.2. A multivalued map G : X → P(X) is called upper semi-
continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0) is a nonempty
closed subset of X, and for each open set N of X containing G(x0), there
exists an open neighborhood N0 of x0 such that G(N0) ⊂ N . G is said to be
completely continuous if G(B) is relatively compact for every B ∈ Pb(X).

Definition 2.3. LetG : X → P(X) be completely continuous with nonempty
compact values. Then G is u.s.c. if and only if G has a closed graph (i.e.
xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if
there is x ∈ X such that x ∈ G(x).

We denote by FixG the fixed point set of the multivalued operator G.
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Definition 2.4. A multivalued map G : J → Pcl(R) is said to be measurable
if for every y ∈ R, the function:

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}
is measurable.

Lemma 2.1. [18] Let G be a completely continuous multivalued map with
nonempty compact values, then G is u.s.c. if and only if G has a closed
graph.

Definition 2.5. A multivalued map F : J × R → P(R) is said to be
Carathéodory if:

(1) t→ F (t, u) is measurable for each u ∈ R;
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ J.

F is said to be L1-Carathéodory if (1), (2) and the following condition holds:
(3) For each q > 0, there exists ϕq ∈ L1(J,R+) such that

‖F (t, u)‖P = sup{|v| : v ∈ F (t, u)} ≤ ϕq for all |u| ≤ q and for a.e. t ∈ J.

For each y ∈ C(J,R), define the set of selections of F by

SF◦y = {v ∈ L1([1, T ],R) : v(t) ∈ F (t, y(t)) a.e. t ∈ [1, T ]}.
Let (X, d) be a metric space induced from the normed space (X, | · |). the
function Hd : P(X)× P(X)→ R+ ∪ {∞} given by:

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

is known as the Hausdorff–Pompeiu metric. For more details on multivalued
maps see the books of Hu and Papageorgiou [18].

In the sequel, we need the following fixed point theorem:

Theorem 2.1. (Bohnenblust-Karlin)[16] Let X be a Banach space and K ∈
Pcl,cv(X), and suppose that the operator G : K → Pcl,cv(K) is upper semi-
continuous and the set G(K) is relatively compact in X. Then G has a fixed
point in K.

Let us recall some definitions and properties of Hadamard fractional in-

tegration and differentiation. Let δ = t
d

dt
, and set

ACnδ (J,R) = {y : J → R : δn−1y(t) ∈ AC(J,R)}.

Definition 2.6. [20] The Hadamard fractional integral of order r > 0 for a
function h ∈ L1([1,+∞),R) is defined as

HIr1h(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1 h(s)

s
ds,

provided the integral exists.
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Example 2.1. Let q > 0. Then

HIq1 ln t =
1

Γ(2 + q)
(ln t)1+q; for a.e. t ∈ [1,+∞).

Definition 2.7. [20] The Hadamard fractional derivative of order r > 0
applied to the function h ∈ ACnδ ([1,+∞),R) is defined as

(HDq
1h)(t) = δn(HIn−r1 h)(t),

where n− 1 < r < n, n = [r] + 1, and [r] is the integer part of r.

Definition 2.8. [19] For a given function h ∈ ACnδ ([a, b],R), such that
0 < a < b, the Caputo–Hadamard fractional derivative of order r > 0 is
defined as follows:

HcDry(t) =H Dr
1

[
y(s)−

n−1∑
k=0

δky(a)

k!

(
log

s

a

)k]
(t),

where Re(α) ≥ 0 and n = [Re(α)] + 1.

Lemma 2.2. [19] Let y ∈ ACnδ ([a, b],R) or Cnδ ([a, b],R) and α ∈ C. Then

HIr1(HcDry)(t) = y(t)−
n−1∑
k=0

δky(a)

k!

(
log

t

a

)k
.

3. Main Results

Definition 3.1. A function y ∈ AC(J,R) is said to be a solution of (1)−(2)
if there exists a function v ∈ SF◦u such that HcDry(t) = v(t) a.e. J and the
boundary condition L(y(1), y(T )) = 0 is satisfied.

Definition 3.2. Afunction w ∈ AC(J,R) is said to be an upper solution of
(1) − (2) if L(w(1), w(T )) ≥ 0, and there exists a function v1 ∈ SF◦w such
that HcDrw(t) ≥ v1(t) a.e. J.
Similarly, A function u ∈ AC(J,R) is said to be a lower solution of (1) −
(2) if L(u(1), u(T )) ≤ 0, and there exists a function v2 ∈ SF◦u such that
HcDru(t) ≤ v2(t) a.e. J.

Theorem 3.1. Assume the following hypotheses hold:
(H1) F : J × R→ Pcp,c(R) is Carathéodory,
(H2) There exist u,w ∈ C(J,R), lower and upper solutions, respectively,

for problem (1)− (2) such that u ≤ w,
(H3) The function L(·, ·) is continuous on [u(1), w(1)]× [u(T ), w(T )], and

nonincreasing with respect to both of its arguments,
(H4) There exists l ∈ L1(J,R+) such that

Hd(F (t, y), F (t, ȳ)) ≤ l(t)|y − ȳ|; for every y, ȳ ∈ R,
and

d(0, F (t, 0)) ≤ l(t); a.e. t ∈ J.
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Then the problem (1)− (2) has at least one solution y defined on J such that

u ≤ y ≤ w.

Proof. Consider the following modified problem

(3) HcDry(t) ∈ F (t, τ(y(t))); for a.e. t ∈ J,

(4) y(1) = τ(y(1))− L(y(1), y(T )),

where
τ(y(t)) = max{u(t),min{y(t), w(t)}},

and
y(t) = τ(y(t)).

A solution to (3) − (4) is a fixed point of the operator N : C(J,R) →
P(C(J,R)) defined by

N(y) =

{
h ∈ C(J,R) : h(t) = y(1) +

1

Γ(α)

∫ t

1

(
log

t

s

)r−1
ν(s)

ds

s

}
,

where

ν ∈ {v ∈ S̃1
F◦τ(y) : v(t) ≥ v1(t) on A1 and v(t) ≤ v2(t) on A2},

S1
F◦τ(y) = {v ∈ L1(J,R) : v(t) ∈ F (t, (τy)(t)), a.e. t ∈ J},

A1 = {t ∈ J : y(t) < u(t) ≤ w(t)}, A2 = {t ∈ J : u(t) ≤ w(t) < y(t)}.

Remark 3.1. (1) For each y ∈ C(J,R), the set S̃1
F◦τ(y) is nonempty. In

fact, (H1) implies that there exists v3 ∈ S1
F◦τ(y), so we set

v = v1χA1 + v2χA2 + v3χA3 ,

where
A3 = {t ∈ J : u(t) ≤ y(t) ≤ w(t)}.

Then by decomposability, v ∈ S̃1
F◦τ(y).

(2) By the definition of τ it is clear that F (·, τy(·)) is an L1− Carathéodory
multi-valued map with compact convex values and there exists φ1 ∈
L1(J,R+) such that

‖F (t, τy(t))‖P ≤ φ1(t) for each y ∈ R.
(3) Since τ(y(t)) = u(t) for t ∈ A1, and τ(y(t)) = w(t) for t ∈ A2, then

from (H3), the equation (4) implies that

|y(1)| ≤ |u(1)|+ |L(u(1), u(T )| ≤ |u(1)|+ |L(y(1), y(T ))| = |u(1)| on A1,

and

y(1) = w(1)− L(w(1), w(T ) ≤ w(1)− L(y(1), y(T )) = w(1) on A2.

These show that,

|y(1)| ≤ min{|u(1)|, |w(1)|}.
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Let

R := min{|u(1)|, |w(1)|}+
‖φ1‖L1

Γ(r + 1)
(log T )r,

and consider the closed and convex subset of C(J,R),

B = {y ∈ C(J,R) : ‖y‖∞ ≤ R}.

We shall show that the operator N : B → Pcl,cv(B) satisfies all assumptions
of Theorem 2.1. The proof will be given in six steps.

Step 1: N(y) is convex for each y ∈ B.
Let h1, h2 belong to N(y), then there exist ν1, ν2 ∈ S̃1

F◦τ(y) such that for
each t ∈ J, we have, for i = 1, 2,

hi(t) = y(1) +
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
νi(s)

ds

s
.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J, we have

(dh1 + (1− d)h2)(t) = y(1) +
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
[dν1(s) + (1− d)ν2(s)]

ds

s
.

Since SF◦τ(y) is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2: N maps bounded sets into bounded sets in B.
For each h ∈ N(y), there exists ν ∈ S̃1

F◦τ(y) such that

h(t) = y(1) +
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
ν(s)

ds

s

From (H1)-(H3), for each t ∈ J, we have

|h(t)| ≤ |y(1)|+

∣∣∣∣∣ 1

Γ(r)

∫ T

1

(
log

T

s

)r−1 ν(s)

s
ds

∣∣∣∣∣
≤ min{|u(1)|, |w(1)|}+

1

Γ(r)

∫ T

1

(
log

T

s

)r−1 |ν(s)|
s

ds

≤ min{|u(1)|, |w(1)|}+
‖φ1‖L1

Γ(r + 1)
(log T )r.

Thus
‖h‖∞ ≤ R.

Step 3: N maps bounded sets into equicontinuous sets of B.
Let t1, t2 ∈ J , t1 < t2, Let y ∈ B and h ∈ N(y). Then
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|h(t2)− h(t1)| =

∣∣∣∣∣ 1

Γ(r)

∫ t1

1

[(
log

t2
s

)r−1
−
(

log
t1
s

)r−1]
ν(s)

ds

s

+
1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1
ν(s)

ds

s

∣∣∣∣∣
≤ ‖φ1‖L1

Γ(r)

∫ t1

1

[(
log

t2
s

)r−1
−
(

log
t2
s

)r−1] ds
s

+
‖φ1‖L1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1ds
s

→ 0 as t1 → t2.

As a consequence of the three above steps, we can conclude from the Arzelá-
Ascoli theorem that N : C(J,R)→ P(C(J,R)) is completely continuous.

Step 4: N has a closed graph.
Let yn → y∗, hn ∈ N(yn) and hn → h∗. We need to show that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists νn ∈ S̃1

F◦τ(y) such that, for each t ∈ J,

hn(t) = y(1) +
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
νn(s)

ds

s
.

We must show that there exists ν∗ ∈ S̃1
F◦τ(y∗) such that, for each t ∈ J,

h∗(t) = y(1) +
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
ν∗(s)

ds

s
.

Since F (t, ·) is upper semi-continuous, then for every ε > 0, there exists a
natural number n0(ε) such that, for every n ≥ n0, we have

νn(t) ∈ F (t, τyn(t)) ⊂ F (t, y∗(t)) + εB(0, 1) a.e. t ∈ J.

Since F (·, ·) has compact values, then there exists a subsequence νnm(·) such
that

νnm(·)→ ν∗(·) as m→∞,

and

ν∗(t) ∈ F (t, τy∗(t)) a.e. t ∈ J.

For every w ∈ F (t, τy∗(t)), we have

|νnm(t)− ν∗(t)| ≤ |νnm(t)− w|+ |w − ν∗(t)|.

Then

|νnm(t)− ν∗(t)| ≤ d(νnm(t), F (t, τy∗(t)).
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We obtain an analogous relation by interchanging the roles of vnm and v∗,
and it follows that

|νnm(t)− ν∗(t)| ≤ Hd(F (t, τyn(t)), F (t, τy∗(t))) ≤ l(t)‖yn − y∗‖∞.

Then

|hnm(t)− h∗(t)| ≤
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
|νnm(s)− ν∗(s)|

ds

s

≤ 1

Γ(r + 1)
(log T )r

∫ T

1
l(s)ds‖ynm − y∗‖∞.

Thus

‖hnm − h∗‖∞ ≤
1

Γ(r + 1)
(log T )r

∫ T

1
l(s)ds‖ynm − y∗‖∞ −→ 0

as m→∞.
Hence, Lemma 2.1 implies that N is upper semicontinuous.

Step 5: Every solution y of (3)− (4) satisfies

u(t) ≤ y(t) ≤ w(t) for all t ∈ J.

Let y be a solution of (3)− (4). We prove that

u(t) ≤ y(t) for all t ∈ J.
Suppose not. Then there exist t1, t2 with t1 < t2 such that u(t1) = y(t1)
and

u(t) > y(t) for all t ∈ (t1, t2).

In view of the definition of τ one has
HcDry(t) ∈ F (t, u(t)) for all t ∈ (t1, t2).

Thus there exists v ∈ SF◦τ(u) with v(t) ≥ v1(t) a.e. on (t1, t2) such that
HcDry(t) = v(t) for all t ∈ (t1, t2).

An integration on (t1, t], with t ∈ (t1, t2) yields

y(t)− y(t1) =
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1
ν(s)

ds

s
.

Since u is a lower solution to (1)− (2), then

u(t)− u(t1) ≤
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1
v1(s)

ds

s
; t ∈ (t1, t2).

It follows from y(t1) = u(t1) and ν(t) ≥ v1(t) that

u(t) ≤ y(t) for all t ∈ (t1, t2).

This is a contradiction, since u(t) > y(t) for all t ∈ (t1, t2). Consequently

u(t) ≤ y(t) for all t ∈ J.
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Analogously, we can prove that

y(t) ≤ w(t) for all t ∈ J.
This shows that

u(t) ≤ y(t) ≤ w(t) for all t ∈ J.

Consequently, the problem (3)−(4) has a solution y satisfying u ≤ y ≤ w.

Step 6: Every solution of problem (3)− (4) is solution of (1)− (2).
Suppose that y is a solution of problem (3)− (4). Then, we have

HcDry(t) ∈ F (t, τ(y(t))) for a.e. t ∈ J,
and

y(1) = τ(y(1))− L(y(1), y(T )).

Since, for all t ∈ J, we have

u(t) ≤ y(t) ≤ w(t),

then,
τ(y(t)) = y(t).

Thus, we get
HcDry(t) ∈ F (t, y(t)) for a.e. t ∈ J,

and
L(y(1), y(T )) = 0.

We only need to prove that

u(1) ≤ y(1)− L(y(1), y(T )) ≤ w(1).

Suppose that
y(1)− L(y(1), y(T )) < u(1).

Since L(u(1), u(T )) ≤ 0, we have

y(1) ≤ y(1)− L(u(1), u(T )).

Since L(·, ·) is nonincreasing with respect to its both arguments, then we
obtain

y(1) ≤ y(1)− L(u(1), u(T )) ≤ y(1)− L(y(1), y(T )) < u(1).

Hence, we get y(1) < u(1), which is a contradiction. Analogously we can
prove that

y(1)− L(y(1), y(T )) ≤ w(1).

Hence, y is a solution to (1)− (2).

This concludes that problem (1)− (2) has a solution y satisfying u ≤ y ≤
w.

�
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Remark 3.2. In the case where L(x, y) = ax− by − c, Theorem 3.1 shows
existence results to the following problem,

(5) HcDry(t) ∈ F (t, y(t)) for a.e. t ∈ J,

(6) ay(1)− by(T ) = c,

where −b < a ≤ 0 ≤ b, c ∈ R, which includes the anti-periodic case b =
−a, c = 0.
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